7 research outputs found

    Phase and amplitude pre-emphasis techniques for low-power serial links

    Get PDF
    A novel approach to equalization of high-speed serial links combines both amplitude pre-emphasis to correct for intersymbol interference and phase pre-emphasis to compensate for deterministic jitter, in particular, data-dependent jitter. Phase pre-emphasis augments the performance of low power transmitters in bandwidth-limited channels. The transmitter circuit is implemented in a 90-nm bulk CMOS process and reduces power consumption by pushing CMOS static logic to the output stage, a 4:1 output multiplexer. The received signal jitter over a cable is reduced from 16.15 ps to 10.29 ps with only phase pre-emphasis at the transmitter. The jitter is reduced by 3.6 ps over an FR-4 backplane interconnect. A transmitter without phase pre-emphasis consumes 18 mW of power at 6Gb/s and 600mVpp output swing, a power budget of 3mW/Gb/s, while a transmitter with phase pre-emphasis consumes 24mW, a budget of 4 mW/Gb/s

    A 10Gb/s eye-opening monitor in 0.13ÎĽm CMOS

    Get PDF
    An eye-opening monitor circuit in 0.13 ÎĽm CMOS operates from 1 to 12.5Gbit/s at 1.2V supply. It maps the input eye to a 2D error diagram with 68dB mask error dynamic range. Left and right halt of the eye are monitored separately to capture asymmetric eyes. Tested input amplitude is from 50 to 400mV. The chip consumes 330mW and works at 10Gb/s with a supply voltage as low as 1V

    A 10-Gb/s two-dimensional eye-opening monitor in 0.13-ÎĽm standard CMOS

    Get PDF
    An eye-opening monitor (EOM) architecture that can capture a two-dimensional (2-D) map of the eye diagram of a high-speed data signal has been developed. Two single-quadrant phase rotators and one digital-to-analog converter (DAC) are used to generate rectangular masks with variable sizes and aspect ratios. Each mask is overlapped with the received eye diagram and the number of signal transitions inside the mask is recorded as error. The combination of rectangular masks with the same error creates error contours that overall provide a 2-D map of the eye. The authors have implemented a prototype circuit in 0.13-ÎĽm standard CMOS technology that operates up to 12.5 Gb/s at 1.2-V supply. The EOM maps the input eye to a 2-D error diagram with up to 68-dB mask error dynamic range. The left and right halves of the eyes are monitored separately to capture horizontally asymmetric eyes. The chip consumes 330 mW and operates reliably with supply voltages as low as 1 V at 10 Gb/s. The authors also present a detailed analysis that verifies if the measurements are in good agreement with the expected results

    ICs for 100-Gb/s Serial Operation

    No full text
    The building blocks of 100-Gb/s serial transmission system of Integrated Circuits (IC) for communication systems has been discussed. The transceiver building blocks has been grouped into three application areas such as Blue building blocks, Green building blocks, and Orange building blocks. The products will play very important role in solving immediate bandwidth needs, apart from providing future applications and services, such as remote-presence applications, high- definition cinema and three-dimensional applications. The cost-effective and highly integrated systems must be developed, for enabling a volume penetration of 100 Gb/s systems. The IC technologies which currently have proven to be most suitable for these high-speed transceiver electronics are indium phosphide and silicon germanium HBT technologies
    corecore